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Abstract. The use of convolutional neuronal networks (CNN) for the treatment of interferometric fringes has
been introduced in recent years. In this paper, we optimize and build a CNN model, based U-NET architecture,
to maximize its performance processing electronic speckle interferometry fringes (ESPI). The proposed
approach is based on quick and light trainings to select the architecture parameters (network depth and kernel
sizes) to maximize the performance of the neural network improving the visibility of ESPI images. To measure
the performance, the structural similarity index (SSMI) will be the lead indicator, and the need for large data-
sets to train neural networks, unavailable for ESPI images, forces the use of a simulated ESPI image
dataset along the process. This dataset is computed using Zernike polynomials to simulate local surface defor-
mations in the specimen under test and simulated true speckle fields for the reference and object field involved

in ESPI techniques.
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1 Introduction

Electronic speckle pattern interferometry (ESPI) has been
used extensively since its inception in 1970 [1] in the field
of optical metrology with applications to non-destructive
testing, but the high frequency noise generated in the
speckle interferometry process is a relevant caveat in its
applications, as this noise is also the carrier of the informa-
tion on surface displacement, the variable under study with
these techniques. The right balance in the noise retrieval
without compromise the encoded information on displace-
ment, is a key success factor for the qualitative or quantita-
tive interpretation of the results and industrial applications.

Over the years, to mitigate the low visibility and high
noise level issues in ESPI interferometry, some techniques
were developed and applied, including filtering process in
the frequency or spatial domain, or Fourier transform based
denoising techniques, or more traditional image processing
filters like the median or low pass filters and its variations
[2-4]. All of them applied to the resulting speckle image
or the computed wrapped or unwrapped phase field.

Over the last few years, the continuous advances in arti-
ficial intelligence (AI) techniques and specialized hardware
to run AI models, have eased their application to differ-
ent areas of research, and more specifically to improve

image visualization, including interferometric
improvement.

Its applications to denoise interferometric images and
clean the interference fringes has been broadly studied,
revealing these techniques as a game changer to enhance
the qualitative (and quantitative) results of interference
data [5], and with an appropriate computational frame-
work, a powerful and easy to use tool to enhance visibility
of interference fringes.

However, even if the use of a specialised frameworks, like
KERAS, PyTorch or Tensorflow, simplify the use of CNN
and removes the implementation complexity, there are
some initial decisions on neural network design that must
be taken to select the network topology fitting to the speci-

fic problem to solve. Those initial decisions are, basically:

images

(a) How to design a training dataset and
(b) Decide the hyperparameters of the neural network:
the number of layers and kernels to use.

To denoise ESPI fringe patterns, this paper proposes the
use the U-NET architecture for the network topology [6], a
powerful and easy to use type of convolutional neural
networks broadly used in interferometric denoise, wrapped
phase denoise and SAR image denoise [5]; and to address
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the decisions to take implementing the CNN, we propose to
build a training dataset using simulated electronic speckle
pattern interferometry following the method described by
Goodman [7], and the use Zernike polynomials to simulate
local deformations.

The hyperparameter selection is done using a grid
search over the results of several models (trained with the
same training dataset) applied to a small dataset containing
sample images not used to train the models. This grid
search will select the number of layers and number of
kernels maximising the structural similarity index (SSMI)
[8] between the input and reconstructed images.

1.1 Speckle pattern interferometry

Electronic speckle pattern interferometry (ESPI) is a tech-
nique used to measure from sub-micron to tenth of microns
displacements in optically rough surfaces assessing the over-
lap of two speckle patterns. Since its initial uses in 1971,
noise, and low visibility are the major drawbacks for this
technique and the artificial intelligence has been proved
as an effective technique to enhance and mitigate those
major drawbacks. The optical systems in Figure 1 shows
a simple implementation of ESPI interferometer system,
where the speckle field coming from a diffuse specimen
under test (test object) is interfered with a different speckle
field arising from a rough surface acting as reference (diffuse
reference).

The intensity distribution recorder by the detector in
the imaging system follows:

I= 1,4 1,2I1,1,cos(¢,— ¢,), (1)

where 1,, I, ¢,, and ¢, are the amplitude and phase of the
object and reference speckle waves at the detector. The
ESPI fringe pattern is obtained from a pair of images,
I'and I, recorded by the imaging system before and after
deformation:

I=1.+ 1,211, cos(¢, — ¢,)
I =1+ I,2VI,1, cos(p, — b, — ),

where ¢ is the phase change induced in the object wave by
a deformation in the test specimen.

The ESPI fringe pattern is finally obtained subtracting
those images and the resulting intensity pattern is accord-
ing to the formula [1]:

-1 = ‘4\/7Zsin (q&o b+ g) sin (g) ‘ 3)

(2)

The resulting intensity field is proportional to the term
|sin(¢/2)]|, revealing a fringe field where the minimum value
for the resulting intensity (perfect correlation between
I and I') happens where the value for the term |sin(¢/2)
is @ = 2nn and the maximum value for this term occurs
at ¢ = (2n + )7

This behaviour reveals a correlation fringe field like
interference patterns, the ESPI fringe pattern, used to mea-
sure sub-micron displacements in the illuminated structure.
This resulting fringe pattern is related to ¢, the optical path

Diffuse Reference

Test Object Imaging System

Coherent
Illumination

Fig. 1. Example setup for speckle pattern interferometry.

difference produced by the deformation in the specimen
surface between frames [ and I

1.2 U-NET architecture

Our proposed design to denoise ESPI fringe fields, is the
U-NET architecture [2], a powerful and easy to use type
of convolutional neural networks, broadly used in interfero-
metric denoise, wrapped phase denoise [5] and SAR image
denoise. The U-NET is a convolutional encoder — decoder
with internal connections between the encoding and decod-
ing paths, where the noisy input image to be cleaned is
introduced in the encoder path where 2D-convolutional
(Conv2d) and maxpooling layers are combined to reduce
the spatial resolution of the input image, capturing the
image details (features).

Once the input image has been fully encoded, the deco-
der path reverses the operations done along the encoding
phase and get a cleaned output image.

This architecture is depicted in Figure 2, where a 1
channel image of 256 x 256 pixels feeds in the neural net-
work and is encoded using convolutions while its spatial res-
olution is reduced with maxpooling operations. Along the
encoding path, the number of channels of the processed
images is increased by the convolution operations, resulting
with a compressed image of 32 x 32 pixels and 512 channels
after all encoding operations. The spatial features of the
input image are encoded along those 512 channels.

There are improvements introduced by the U-NET
architecture over the classic autoencoder architectures [6].
In the classical autoencoder architecture, the information
is compressed in a linear way along the encoder path reduc-
ing the dimensions of the input image and missing some
features from the input image along the encoding path.
The addition of “skip connections’ to the decoding path in
the U-NET architecture improves the network training
and overall performance and overcomes the loss of informa-
tion produced in the encoding phase using the outputs of
the corresponding layer of the encoder path as additional
input to the decoder layer.
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Fig. 2. Example U-NET network with an input image of 256 x 256 and 1 channel (B/N) and 32 x 32 resolution after the full encoder
path. The decoder path reverses the encoding operations and uses inputs from the corresponding encoder layer (skip connections) to

end with a cleaned output image.

2 Network optimisation

To effectively apply artificial networks to solve a problem,
there are some decisions on network architecture and hyper-
parameters to take in advance, at least the selection of the
model, in our case U-NET, the depth of the network (the
hidden layers in the decoding and encoding paths) and
the kernel size to be used in the convolution operations
along the network.

The selection of the hyperparameters will be based
in a light and quick training using a small training data-
set maximising one indicator measuring the network
performance.

To assess the performance of the network, we use the
SSMI [8]. The advantage of this index over other error mea-
surements, like the MSE (mean squared error) or RMSE
(root mean squared error) is that it measures the perceived
increase of quality across the reconstructed image, removing
the bias that the MSE and RMSE could have with ESPI
images where there is a predominant random high fre-
quency component (the speckle field) impacting those error
measures.

2.1 Training dataset

The training procedure of artificial neural networks involves
the use of large dataset of annotated images to train the
network. While there is availability large image datasets
in other research domains, like SAR or MRI, there are

not available datasets with ESPI images to train the
network, making necessary build a dataset with simulated
images for our training and optimisation procedures.

To build the training datasets used for our neural
network optimisation and training, we use the formula (3)
with three main parameters to simulate: I, I, and ¢, being
1, and I, corresponding to object and reference speckle fields
and ¢ the optical path difference induced by a small defor-
mation on the specimen surface.

There are common methods to simulate I, and I,, gener-
ating pseudo-random numbers following a normal distribu-
tion over an interval [0, I,)] and [0, pI,] with [,] a random
number in the interval [0, 255] and p a normalised visibility
parameter.

For our specific case, we implemented in Python the
method described by Goodman [7] to simulate true speckle
fields, simulating a random amplitude and phase for the
object and reference speckle fields (I,, I, ¢,, and ¢,).

The pending parameter for the simulation is ¢, the opti-
cal path difference introduced by a displacement in the test
specimen. That surface deformation can be easily simulated
using Zernike polynomials widely used in optics to represent
surfaces or phase variation [5, 9]. Using the Zernike polyno-
mials as the basis to simulate the deformation, the phase
variation can be written as follows:

0= En:cz‘zi (4)
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where ¢; and Z; are random coefficients and the i-Zernike
polynomial respectively; and n is the order of the Zernike
expansion.

Using this approach for ¢, we can simulate any displace-
ment field selecting the coefficients ¢; and the Zernike
polynomials used in the Zernike approximation, and more-
over, introduces into the simulation the possibility to
control de complexity, shape, and size of the resulted dis-
placement just selecting the Zernike components to use in
the equation (4) and the random coefficients c;.

Following this procedure, we produced the datasets
composed of 5000 pair of images [|I - I|, [sin(¢p/2)|] to be
used in the hyperparameter selection.

In Figure 3 some sample images from the training
dataset are presented corresponding to different values of
n for the ¢ simulation. If the n is increasing, more Zernike
components are used in the simulated displacement and
more complexity is shown in the sin(¢/2) component in
equation (3).

2.2 Hyperparameter selection

To select the depth and kernel size, we run several training
procedures with a 5000 pair of 256 x 256-pixel monochrome
images, each one with different set of hyperparameters. For
the depth of the network (the levels in the encoding path)
we checked values varying from 3 to 6 hidden layers in
the encoding path and for kernel size we checked different
squared kernels starting from a [3 x 3] kernel finishing with
the biggest kernel used in the optimisation procedure with a
size of [7 x 7] (Table 1).

This initial step builds 9 different candidate trained neu-
ral network models. In the next step of the optimisation, we
select the one with the best performance as the final net-
work architecture to use.

With a test dataset composed of 1000 random pairs of
images, we run each one of the candidate models feeding
simulated ESPI images, the equivalent to column (A) in
Figure 3, comparing the output of the network with the
expected output (or ground true image, the equivalent
column (B) in Fig. 3).

For the comparison between the network output
and expected output we selected the SSMI index, select-
ing the depth and kernel size combination with the biggest
average SSMI along the whole test dataset as the final
hyperparameters to use in the proposed network
architecture.

For our specific case the selected outputs to define the
final U-NET hyperparameters are a depth of 4 levels in
the encoder path and a kernel size of 5 x 5. With this hyper-
parameter combination, the computed average SSMI index
is 0.900 for the whole input dataset.

3 Model results

With the selected hyperparameters (kernel size = 5 x 5 and
layers = 4), we build and train the final neural network
model using a new training dataset and finally check the
model. To build this new training dataset, we followed
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Fig. 3. Generated image samples. (A) Computed ESPI image
using only the n = 3, 8 and 14 first Zernike polynomials to
simulate the complexity of specimen displacement. (B) Clean
image or ground true, the sin(¢/2) component used to generate
image (A).

Table 1. Average SMMI value for the checked combina-
tions of levels in the encoder path and kernel size.

Kernel size

3 x3 5 x5 7T X7

Depth 4 0.896 0.900 0.801
5 0.798 0.760 0.728

6 0.880 0.859 0.760

In bold, the combination with best performance.

the method described in Section 2.1 to simulate 15.000 pair
of 256 x 256-pixel monochrome images.

The 15.000 generated images were divided into training
and validation dataset, with 80% of mage pairs for the
training dataset, and 20% for the validation dataset.

The final training was implemented using simple
options for the training: ADAM optimisation [10] and
MEAN SQUARED ERROR as the loss function. We
included an early stop condition of 3 epochs without
improving the loss, to prevent overtraining.

The final network architecture is represented in Figure 4,
and it is composed of 4 blocks along the encoding path,
performing the convolution, activation and convolution
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Fig. 4. U-NET network finally used concatenating blocks consisting of two 5 X 5 convolutions (each one followed by a ReLU
activation unit) and a 2 x 2 maxpooling operation with stride = 2 for downsampling along the encoding path, reversing the
operations along the decoder path using blocks composed of upsampling operations followed by a 2 x 2 convolution (up-conv),
concatenated with the corresponding output of the encoding part and followed by two 5 X 5 convolutions (each one followed by a

ReLU activation unit).

operations, using ReLU as the activation function for
the layer and a 5 x 5 kernel for the convolution oper-
ations, followed of a maxpooling operation with stride
2 x 2. Each step in the encoding path is reducing the
dimension of the latent image, increasing (doubling) the
feature channels.

The steps along the decoder path consist in an upsam-
pling operation followed by a 2 x 2 convolution to increase
the size of the latent image concatenated with the corre-
sponding output of the encoder path and two 5 x 5 convo-
lutions (each one followed by a ReLU activation unit).

All the computational steps were executed using a
Google Collab instance with GPU support and after
23 min and 115 training epochs, the training automatically
stopped reaching a loss value of 0.0084 on the validation
dataset.

The average SSMI index between the ground true
(expected output) and the reconstructed image using the
network was 0.899, aligned with the expected value esti-
mated in the hyperparameter selection step.

In Figure 5, some examples of the performance of
the network on simulated images shown the performance
of the artificial networks to enhance the visibility of
ESPI images, improving the qualitative assessment of these
fringe fields. The trained neural network processes the
ESPT simulated image (A), improving the visibility of the
fringe field (one of the biggest caveats in ESPI techniques)
providing a clean image (C) facilitating qualitative assess-
ment and further image processing techniques. The
computed SSMI index between (B) and (C) shows quanti-
tatively high similarity between expected image and
processed image.
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Fig. 5. Samples of cleaned images using the selected hyperparameters. (A) Input image. (B) Expected output (Ground true).
(C) Processed image by the U-NET. The SSMI index is computed using expected and processed image (columns B and C).
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4 Conclusion

We presented a simple approach to select the depth and
kernel size to apply U-NET neural networks to denoise
ESPI images to maximise its performance, and the resulting
trained network improves the perceived quality of the ESPI
fringe field.

The use of synthetic generated datasets removes the
caveat of having large image collections to train the net-
work models, and the generated datasets using Zernike
polynomials to simulate surface displacements, can be
adjusted to the specific case under study, improving the
network performance. With the described method, the gen-
erated dataset can be customised in terms of image size,
speckle size and interferometric setup, to match the exper-
imental conditions and secure better performance for ESPI
applications.

The use of specialised hardware, like GPUs or TPUs,
and software frameworks like KERAS or PyTorch in cloud
environments, ease the application of artificial neural net-
work models to ESPI interferometry and make possible to
work remotely, without continuous access to lab to develop
the models.

Moreover, the software packaging of those software
frameworks, running in standard IT equipment and low-
cost GPUs contributes to decrease the associated costs.
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